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ABSTRACT

The propagation of cylindrical dielectric waveguide
modes near cut-off and far from cut-off are considered. The
relative amounts of Ey and H,, and the transverse components
of the fiel' are determined for both sets of hybrid modes.

With the radial dependence of the z-components of the field in
the central dielectric given by‘Jn(ur/a},_Ehe transverse
components far from cut-off are given by Jnil(ur>é), where u is
a parameter found from the boundary conditions and which fixes
the scale of the Bessel function relative to the boundary r=a.
The two values n+l and n~l correspond to the two sets of modes.

The designation of the hybrid modes are discussed. Field plots

for the lower order modes are given.
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LIST OF ILLUSTRATIONS

Figyure 1 Construction to show the equivalence of the waveguide condition
that at cut-off vpy = c/n; with the geometrical optics
conditions that propagation oc¢urs only if the angle of
incidence of the wave on the fiber wall exceeds the critical

- angle for total internal reflection. The wave normal is
. given byu&k Sl and 82 are two equiphase surfaces

separated by M/n;, ani A, is the guide wavelength.

g

Figure 2 Typical curves of the frequenoyVversus 1/7\g for mode
propagation in a dielectric wavegquide. Each mode :s
represented by & line which is confined tc the region
between the lines whose slopes are c/ny and c¢/nj. At
the frequency y ' the TEj; mode has a giiide waveliength
of kg , phase velocity Vph and group velocitv v_group.

Figure 3 Field plot in the core for the TEOZ rnode far from cut-off
and for a small difference in indices of refraction of

the core and cladding.

Figure 4 Field plot in the core for the ME,, mode far from cut-off

and for a small difference in indices of refraction of the

. core and cladding.

ﬂ . Figure 5 Field plot in the core for the EHll mode far from cut-off
and for a small difference in indices of refractior of the
core and cladding.

Figure 6 Field plot in the core for the HE2] mode far from cut-off
and for a small difference in indices of refraction of the

] core and cladding.
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I. INTRODUCTION

In a light pipe electromagnetic energy is propagated
down the pipe by reflection from the walls of the structure.
If the transverse dimensions are comparable to the wavelength of
the light, only certain fieid distributions, or modes, will
satisfy Maxwell's equations and the boundary conditions. In
this case the light pipe is more arpropriately considered as
a waveguide. Even in very large structures there are waveguide
modes, but theire are so many of them, their number increasing
as the area, that in most cases a geometrical cptics
description is more fruitful.

Waveguides were first dealt with by Loxd Rayleigh.l
Later the dielectric waveguide was investigated theoretically
by Hondros and Debye2 and experimentally by Schriever.3

The distinction between metallic and dielectric
wavequides is in the reflection mechanism responsible for
confining the energy. The metallic guide does so by reflection
from a good conductor at the boundary. In the dielectric
waveguide, this is accomplished by total internal reflection,
which is gotten by having the central dielectric made of a
material of higher index of refraction than the surrounding

dielectric. The two regions will henceforth be referred to as

the core and cladding.
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In a metallic guide there are two sets of solutions,
the transverse electric and transverse magnetic modes. In the
dielectric guide all but the cylindrically symmetric modes,

TE and TM

om are hybrid, i.e. they have both electric and

om’

14

magnetic z-components. In general, one would expect twe
sets of such hybrid modes, because the boundary conditions

give a characteristic equation which is quadratic in the

Bessel functions describing the field in the central dielectric.
Beam et al6 gave the two sets for n=1l, and Abele’ arrived at
the two sets by a graphical solution of the characteristic
eguation.

Until recently the main concern has been with the
three lowest order modes, HEj;;, TEg; and ™j;. However, with
the increased interest in end-fire antennas and the observations
of waveguide modes in the visible region of the spectrum,8 the
higher order modes assume greater importance.

In this paper th: two sets of solutions are given,
including cut-offs, field distributions, and conditions far
from cut~off. The designations of the hybrid mcdes are
considered. Some properties of the propagating modes are

discussed.
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II. BAS1IC EQUATIONS

The cylindrical dielectric waveguide consists of a core
of high dielectric constant 61 and radius a surrcounded by a
cladding of lower dielectric constant 5?2. Both regions are
assumed to be perfect insulators with the free space magnetic
permeability . Such a structure can have an infinite numbec
of modes, but for given values of 6]3 62 and a, oniy 2
finite number of these are wavegquide moces hLave their fields
iocalized in the vicinity of the ccre. The other "unbournd”
modes would correspond for example to light striXing th2 core
from the side, passing on throudh the core andé emerging froa
the other side.

Choose a cylindrical coordinate system r, 8, z with
the z-axis lying along the guide axis. & waveguide mode is a
coherent distribution of light, localized in the vicinity of
the core by total internal reflection, and whichk propagates
down the guide with a well defined phase velccity. That is.
the z and time dependences are given by exp {i(hz-ﬂt)} .
wirere w is the anzular freguency and h is the propagation constant
which is determined from the bcundary conditions.

Beczuse of the cylindrical symmetry, the other components
of the fi2l? can be expressed in terms of E, and Hz.g The
z-components of the field satisfy the wave equation in cylindrical

coordinates. The solutions are:




-

3
I

, = Ap I, (7\1 r) cos (né + @ n)exp {i(hz-@t)} )

Hy

Bp J, (A r) cos (a8 + g plexp {i (hz-w:)} .

The field in the cladding is given by replacing the constants

A, and B, by C, and Dn' and by replacing the Bessel function

Jy (A} r) by the modified Hankel function of the first kind

K, (A2 r). These particular Eankel functions are required in

the cladding, because they are the only cylindrical functions that
vanish suificiently rapidly as r incrcases to infinity to describe
a field bouné to the central dielectric. With the definition

of the propagation constant k2 = w2p.€ , The A's are defined by

both are real. ¢p and ‘y’n are phase factors, whicn are related

by the boundary conditions.

The transverse components of the field can be expressed

in terms of Ez and H, by9

or h 20
_h _[_1_ JE, _ 3Hz]
Eg =1 3254727 |¥ S h dr
n [ x21 JE, aaz]
Hr-l - Ld +
k2-h? L ywh r d8 dr
2
Hg = 1 D LA aHz-‘
k2-h? uwh Jr r J e |

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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At the boundary r = a, the continuity of the tangential
components of the field give the following four equations for

the constants A,, B,, C,, D,. For simplicity 7\la and A,a have

been replaced by u and w. The continuity of the tangential components |

of E give
Ap Jn = Cn ¥n: (8)
nh . . [
A o2 J_ sin (ne +pn) + B, ;;M J.' cos /ne +%n) (9)

= ~Cg 3% Kpsin (n@ +@n)-D, ) K, cos(ne +%n),
w

and from the tangential components of H,

B, J, = D, K, (20)
A, k2 5, -h : .
n L_L_‘l:_m_ Jn' cos (n@ +@n) - By 42 Tp sir (n6 +%n)
ky2 h
=~Cp, ;:%w- Knl cos (ne +@n) + D_ w2 Kp sin (ne +@n) (11)

The primes on J, and K, refer to differentiation with respect
to their arguments, u and w, respectively. Further, define

n] and n3 by

ny = I, (4) . ny = l%'(w) (12)
u Jp (u) w K, (w)
For the four equations to be consistent, the determinant of the
coefficients must vanish, giving
(ny + n3) (klz ny + k22 ny) - sini{n® +@n) sin(né +¥n) (12)

n¢h® (1/u® + 1/w2)2 B cos(n® +pr;) cos (nd +pn)




-6-

The left side of (13) is independent of angle; therefore, the
phases @ n and ¥, must be related such as to make the right

s‘de a constant. This will be the case if

Pn-@, = 2T/2. (14)

Then (13) becomes

(ny + ny) (k;2 n1 +k22 ny) = n?h2(1/u? + 1/w2)2, (15)

Eq. (15) together with Egs. (3) determine the value cf h.

The quantity u enters (7) both explicitly and as the argument
of n;. However, n; is a rapidly varyirg oscillatory function of u. ]
Hence, (15) can be considered roughly as a quadratic equation
in n,. The two sets of solutions are the two sets of hybrid
modes.

From the set of four boundary condition equations,

the relative amounts of E,; and H, in & hybrid mode can be

found in a straightforward way. The result is

p o iw Bn cos(n@ + %) = n(1l/u? + 1/w?) (16)
h A, sin(n® +@p) n; + n,

The coefficient pw/h in the definition of P has been included
for convenience in later use.

Expressed in terms of P, the field in the core becomes




E, = Jy (Mx) Fg,
) r
. 1 Jn
E = J - p AYn
r 1 L n )‘lr] Fc/

b
L3
.
Eg - i A PJnl - an] Fsl
b
16

L 7\1:‘

=]
"

PJ, F, (17)

2 1
Hr = =i __.J.-_.k [P -h_.z— Jnl - pdn jFS
wy L k12 A x !
2
k 2
Hg =i _% [Jnl -p IS .’l‘lr;] Fo.
; WA 1 1 Mr

1 The prime indicates differentiation with respect to the
argument of the Bessel function and

F

"

c = An cos (n@ +@ ) exp {i(hz-alt)}
(18)

Fg = A sin (n® +@,) exp {i(hz-—alt)}.
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III., THE CUT~-OFF CONDITIONS

The cut-offs for the varicus modes are found by
3
solving (15) in the limit of w“-» 0.

Define new quantities & ; and €, by

§1=3t , &,= K1 (19)
an wxn

By using the Bessel and Hankel function identities, Egs. (A4) and

(A6) in the appendix, {15) can be rewritten as

K12 + K,2 2 K2 + K2 ]
2 - [1 2_ & ( + 1 2 1
€:1 1 gz S A d

Ky
X,2 (X2 + K,2) 1 2 1
+,[ 2_£2,8& q ( 1 270 L v 2 K 1.) =0
== 92 ——— 3 —
Kl 2 Kl u Kli w2/ |

§l is a function of u, but as pointed out earlier, §l varies
so much more rapidly than u that where u appears explicitly
in (20) it can be considered a constant. The two sets of
cut~-off values for different n can be obtained by substituting

for the limit of w2-»0.

Consider first the case of n=22. From Eq. (Al0) as

w20,
$2=V[2m-1] . (21)
The two sets of roots of (20) are
£1- & o2

n-1 k32 + kp2 ! (22}

(20)
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Eq. (23) is equivalent to J,(u)=0.

The cut-off values from (22) are given by
Schelkunoff.? Those from (23) were found by Abele? by a
graphical solution of equation {15). Substituting faréfl
in terms of the Bessel functions and using {Al} with n
replaced by (n-1) puts Eg. {22) in a more convenienc form for
small differences in dielectric constart between core and
cladding. The result is

M = - (n-1) _6_}_"_6_2_ . (24)
I (1) €2
For small differences in dielectric constant the cut-offs are given
approximately by Jn_z(u) = 0. For n=2, this gives another set
of modes whose cut-offs are close to the TEom and Tuom modes.
The interesting effects this has on optical waveguide modes are
discussed in a companion article in this joarnal.

For n=1, from Eg. (A9) in the limit of w20 the

two roots of (20) are

£1= kiZ * ko2 1 o (25)
L2 L il
k we
1
2
2 k; 2

£q = o2 + K2 In H0 +X (26)
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Both of the above egquations have cut-offs given by

3y (w)=0 (27)
The root of Eq. (27) at u=0 corresponds to the well-known
HE; mode which does not have a cut-off.

Eq. (27) specifies two sets of modes whose cut-off
conditions are identical. However, the HE;; mode is the first
mode of only one of the sests. This is because 1/u? in equation
{20) cannot be considered as slowly varying near u=0. In fact,
§ 1 becomes 2/u2 near us0 and the quadratic term é 12, drops
out of the equation.

The relative amounts of Ez and Hgz in the hybrid
modes can he found by substituting in Eq. (16) the limiting
values of &, and §2 as w-»0. The results together with the
cut-off conditions are summarized in Table I.

Let u,, be the value u assumes at cut-off for the
m'th root of the cut-off condition involving the n'th orxder
Bessel function. The possible values of Unm are the roots of
the equations giving the cut-off conditions in Table I. At
cut-off, w=0 and h=k,; hence, the first of Egs. (3) becomes

upm = 2 W (@A) (m2 - np2) Y%, (28)

where A is the free space wavelength and ny and n, are the
indices of refraction of core and cladding, respectively.
The modes which can propajate are those for which

1/2
Uy, are less than 2 T (a/A) (n3? - n,?) / . Since up, forms

A I kAot (5 e+ S A s

N W A Y Rt REa ANACY
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an increasing sequence for fixed n and increasging m or for
fixed m and increasing n, the number of allowed mcdes increases

as the square of the radius a.

IV. CONDITIONS FAR FROM CUT-OFF

The field in 2 mode far from cut-off can be found in
the same way as that near cut-off. Only now the asymptotic
forms for large w are substituted for{, in Eq. (20). Table

II sumnmarizes the conditions far from cut-off.
V. MODE DESIGNATIONS

For cylindrical metallic waveguides the modes are
designated TE;q and TMnm' or in the oléer literature these
were Hpy and E,, modes, respectively. The transverse electric
mode TE,, can be derived from a single field quantity, the
z-component of the magnetic field, hence the alternative
designation H, . for this mode.

In the dielectric waveguide only the cylindrically
symmetric n = 0 modes are either transverse electric (TE )
cr transverse magnetic (TMOm)' The otner modes are hybrid,
i.e. they have non-zero values for both E; and H,.

Following Wegner, 10 peam® suggested a scheme for the

designation of the hybrid modes based on the relative
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contributions of Ez and H, to a transverse component of the field
at some reference point. If E, makes the larger contribution,
the mode is considered E-like and designated EHp,, etc. This
method of designation is arbitrary, for it does depend on the
particular transverse compenent of the field chosen, the reference
. point, and how far the wavelength is from cut-off. However,
the use of two letters, such as EH and HE, to designate the
hybrid modes is reasonable because it does imply the hybrid
nature of these modes.
It has become common usage in the microwave literature
to refer to the mode without a cut-off as the HEj; mode.
Referring to Table II, it 1s seen that this mcde has a value

of P = -1 far from cut-off. It is proposed that all the modes !

with P = -1 be designated HE . and the modes with P = +] be t
designated EH . The basic physical difference between the HE
and EH modes will be discussed later in the section on field
plots.

The subscripts on HEnm or EH, refer to the n‘th

order and m'th rank, where the rank gives the successive solutions

of the boundary condition equation irnvolving J,. It is
customary to label these solutions in order starting fromm = 1;
this procedure is followed here. Notice that this makes the cut-off

parameters for the HEj;, and BHll mode the same, namely the ~+ of i

Mo 1 E

Jl(u)=0 at u=3.832. Tabie I summarizes the mode designations su_ges.~3:

LI

here.
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VI, THE TRANSVERSE COMPONEKTS OF THE FIELD
By use of Eqs. (Al), (A2) and (17) the field in the
core can be written as
E, = J, (M) F,
. _h 1l -P i+ P
Bg — 13, [T 2 In1 2 “n+l} Fso (29)
H,=-—2 PJ_ F,
2 - Ph2/%x. 2 ) 2 /4.2
g oo KO[o1-m2a? g 1+ PR2/ky? .
T _— n-1 n+l 3
“Al 2 2
2 2
Hg =i K1 [ 1 - Ph2/k32 1+ Ph2/k,2 g ] P
w)‘l 2 n- > n+l C

The quantities F, and Fg continue to be
For small differences in refractive

Vo d 2 A
and cladding k32/k32 = 1, h"/k;2 T 1 and

P =+ 1. The value P = +1 is for the EH

with the HE modes. It is sgqen from Egs.
components of the field deperd on r thro

modes and have a dependence of -y for

g (18).

iven by Egs.
index between the core
from Tables I and II

o4

mcdes and ~1 goes

(29) that the transvers

ugh -J!_“ for the ER

PIRES

the HE modes.
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ViI. ENERGY FLOW

The energy flow per unit area as a function of r and ©

is given by the real part of the complex Poynting vector,

o~ "
s* = 1/2 E x H, where H is the complex corjugate of H.

A
Only the z-component of‘g* is real and the power per unit area
is given by

S, = 1/2 (E, Hg - Eg H/). (30)

Substitution from Egs. (29) gives after some simplification

> 2
1 b ky 2 | (1-P) (1-Ph2/ky°) 2
Sz =2 ) {ii' L [ p L Jn-i
+ (1+P) (1+Pn2/k;2) Fpq? (31)
4
225 .2
1-P he/
- : /X1 J;-1 Sp+1cos2 (ne‘f‘?n)]

Por small index differences P = + 1 and the term containing

© drops out. The energy flow is then nearly circularly

symmetrical with a radial dependence of

2

S, & o3 (32)

The upper sign n-1 is for the HE modes and the lower for EE.
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VIII. CHARACTERISTICS OF PROPAGATING MODES

For a waveguide mode Al and 12 must both be real.

Hence from Eq. (3)
k52 € h? € ;2. (33)
4 guide wavelength kg, phase velocicy vpb nd effective

refractive index N gg CaN be defined for z mode at the free

space wavelength A by

W/ = vph = )J)\g = ¢/n - (34)

whe' e ¢ is the velocity of ligh: in vzcuum. With (34) and the

definition of the k's, Eg. (33) beccmss

c/nl < Vph < c/n2 i35)

That is, the phase velccity is intarmed’ate between the

velocities of propagztion in bulk mzzz -:2il 2f which the core ana

the cladding are made. At cut-off h=k; or

Vph = c/nz. {36)

Far from cut-off the cther equality in (35) hnolds.

Eg. (36) is the physiczl cpiics analcgue of the
geometrical optics condition that prcpagzticn in the light pipe
occurs when the angle of incidence or the boundary exceeds the
critical angle for to:tal internal reflecticn. Ccnsider a plane
wave incident on the side of the core as shown -n figure 1.

The wave normal is in the direction p, and §, and S, are two
o k2
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equiphase surfacee separated by k/nl, the wavelength in a
homogeneous medium of refractive index ny. The apparent

wavelength along the guide, Ag, is given by

Ag = Mnj sin & (37)

But Snell's law gives for the critical angle for total internal
reflection, ny = nj sin X . Hence at cut-off {37) becomes
A\g = X/nz, or Vpp = ¢/ny, which is the szme as Eq. (36).

Fig. 2 gives the very useful plot of freguency versus the
inverse of the guide wavelength, that is c¢/A vs. 1/Ag for the
propagating modes. To obtain these curves, Egs. (3) and (15)

are solved for h as a function of A and the parameters of the

guide for each propagating mode. The mode lines shown in Fig. 2

are only schematic. A number of machine computaticns of these
lines are available in the literature for the HEll and TEpj

modes, 6,11

Propagation in the modes is such as to be confined to the

region between the lines whose slopes are c/nl and c/nz.

Each mode as a function of wavelength is represented by a line which

approaches the c/nl line far from cut-off and terminates at the
¢/nz line at cut<off. All the modes which have cut-offs

terminate sharply at the c¢/ny line, but the HE;, mode, which

dces not have a cut-c.f, approaches the c/n2 line slcily, finally

merging with it at the origin. The number of modes increases

as the square of the frequency.
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The significance of a mode line can best be understood
by a specific example. Consider the TE,, mode excited at the
frequency Y '. Then 1/7\g is the coordinate of the intersection
of the TEy; line with the ordinate J'. The slope of the line
connecting this point with the origin is c/nOl(k), where n01(h)
is the effective index of refraction of the TEOl mode excited

at the free space wavelength A. c/ncl(%) is the phase velocity,

whereas the slope of the mode curve at V' is the group velocity.
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IX. FIELD PLOTS

The field distribution can be given in the usual way
by field lines in which the direction of the line at a point
gives the direction of the field and the density of lines its
magnitude. Only the field in the core will ke considered. The
field in the cladding can be inferred from the boundary conditions
which require that the tangential comporents ofﬁg andla% and the
normal components cf ég and u}i be continuous. Since the field
components in the cladding depend on modified Hankel function
which monotonously go to zero with increasing r, the density
of field smoothly decreases with an increase in the radial
coordinate.

In Fig. 3 is shown the field dis*ribution in the core
for the &EOZ mede far from cut-off. The field components from
which Fig. 3 was sketched are given in Egs. (17) or (29).

The distribution is the instantaneous values in a transverse

plane and in two longitudinal half planes of length xg/z in

the z-direction. In the transverse plane the magnetic field lines
shown do not form closed curves; this is done to imply that these
field lines close by going down the z-direction. The dots and
crosses in the longitudinal planes specified that the electric
field is perpendicular to these planes. The field line enters

the plane at a dot and leaves it at a cross.
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The z-component of the magnetic field varies as
Jofu r/a). From Table II far from cut-off u is the second zero
of Jl(u) = 0 or u = 7.02, and at cut~-off u is the second zero
of Jy (u) = 0 or u = 5.52. Hence, as the cut-off wavelength
is approached the field distribution in the core readjusts itself
so as to make the boundary of the core shift from the value
u = 7.02 shown in Fig. 3 to the value v = 5,52.

For the TEp} mode the boundary r = a is at p = 3.83
far from cut-off and at p = 2.41 at cut-off. The field
distribution for the TM02 mode is obtzined from Fig. 3 simply
by interchanging the roles of E and H.

Since the Poynting vector is a function of the
vector product of the transverse comrzonents of the field, it is
clear from Fig. 3 that an image of the intensity distribution
in the TEny; or TMgz modes should consist cf two concentric
circles.

It is interesting to compare the field distribution
for the TE , and TMom modes with that obtained for the metallic
waveguide.12 In the later case the electric field is normal
to the metallic boundary surrounding the core and the magnetic

field is parallel to it. Hence, the metallic TE

0 rnodes

look like the dielectric TE,, far from cut-off, but the metallic
TMom modes have the field distrubition of the dielectric

TMom modes at cut-off.
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For the hybrid modes (n = 1) the field distribution

simplifies considerably for the case of a small index difference

between the core and the cladding. From Eg. (29) for the z-components

given by
(E;, H,) X J (ur/a) cos né, (38)
the transverse components of the elesctric field are

Er X {#1) J_,, (ux/a} cos ne, (39)
Eg 0% J,41 (u r/a) sin ne. (40)

The proportionality constants are the same for E, and EO‘ The
plus sign is for the EH,,, mcdes and the minus sign for the
HEnm modes.,

A given field line will be contzined on a surface
whose projecticn in the transverse r, €@ plane is the solution of

—;%g—— = E./Eq (41)

For a small difference in refractive indices bhetween the core
and the cladding Eqs. (39) and (40) apply, and the right side

of (41) is a function of © only. The result is

dr = + cos n e '42)
r de - sin n 9. '

The above can be integrated to give

r = C (sin n 8) *+ 1/n, {43)
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where C is an integration constant. The plus sign in the
exponent is for the EH,, modes and the minus sign for the
HE., modes. By assigning different values to T a family of
curves is obtained which gives the ele«tric field in a transverse
plane. The magnetic field can be found in the same way;
it is the same as for the electric field but with the pattern
rotated by T1/(2n).

For the HE;,, modes Eq. {43) bkecomes

r sin 8 = constant.

This is the equation for a set of straight lines parallel to the
x-axis. Fig. 4 shows the field distribution for the HE,,
mode. Far from cut-off the boundary of the cores is at the seconrnd
root of Jo(u) = 0 or u = 5.52 and at cut-off the boundary is at
the zero of Jl(u) = 0 at u = 3.82. For the HEj; mode thLe
boundary shifts from u = 2.41 for shor: wevelsngths to u = 0
with increasing wavelength.

From Eq. (43) the electric field lines in a transverse

plane for the EH.. mode satisfy

11
r = C sin ©, (45)

or

x2 + (y - c/2)2 = c2/4. (46

By assigning different values to C, Eg. (46) gives a set of
circles that are all tangent to the x-axis 2t the origia. Fig. 5

gives the field plot for the EHy, mode. Far from cut-off the
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boundary of the core is at the first zero of Jz(u) =0
or u = 5,14 and at cut-off the boundary iz at the first zero
of Jl(u) = 0 at u = 3,83 .

For the HEj)] mode the electric field in a transverse
plane is

C (sin 20)~1/2 (47)

a1
]

or

xy = Constant. (48)
For various values of the constant Zqg. (48) gives a set of
hyperbolas. The field lines are shown in Fig. 6. Far from
cut-off the boundary of the core is at the first root of
Jy(u) = 0 or u = 3.83 and at cut-off the boundary is at a value of
u somewhat larger than the first root of Jyfu) = 0 or u = 2.41.

To find a more precise value of u at cut~off for the
case of a small index difference the left side of Eq. (247 caxn be
expanded about the zero of J,_,(u) = 0. To the first order

terms the result is

n-1 2 .52

+
w' = U5 (49)
nm n M un-zlm n22

The prime on u,, indicates that it is the cut-off parameter
for the HE , modes obtained from Eq. (24).

Where the field lines in Fig. 6 do not form closed
curves but end in a plane, the field lines close by moving
perpendicular to the indicated plane. The lower pcrtion of
Fig. 6 shows the closed contours for the electric field in a

hyperbolic section bb'.
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The field plots for the higher order modes are
obtained in the same way as those above.

The EHnm and HEnm modes both have roughly the same
r-dependences for (E,, Hz), mainly J,{ur/a). <But the transverse
components depend on Jn+l(ur/a) for the EH modes and on
Jn_l(ur/a) for the HE modes. This means that the field lines
which are parallel to the guide axis at z=0 tend to form closed
contours by going to larger radii in the region O <|z|<:xg/4
for the EH modes, but on the whole close by going to smaller
radii for the HE modes. Hence, for tke EH modes the peaks in
the Poynting fluxare located further from the center of the
guide than the peaks in Ez and Hz; the reverse is the case for

the HE modes.
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Table I. Summary of Cut-Off Conditionus
The Bessel function of order n and argument u is
given by J,(u), and €, and € , are the dielectric constants

for core and cladding. P gives the relative amount of

. Hz to E, in a mode (see text for exact definition).
First Set of Solutions Secornd Set of Solutions
P Suggested P \ | Suggested
Cut-off at mode Cut-off at Mode
Condition Cut~off | Designation Condition cut-cff | Designation
n=0 I, (u)=0 0 T™om Jo(u)=0 00 TEqm
m=1,2'°° m:ll X
n=l | 3, (u)=0 -1 HE ) X; 2 EH
1 m:ilZo-o 2 m=h‘2-°°
K2
U.Jn_z (u) _
— _ 2
=2 Jn-l(“) -1 HE . Jn(u)—o kl EHnm
m=l'2'.‘ k-T m:l,z...
- 2
-(n-1) EL_JEZ
2

o ek g
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Table II. Summary of Conditions Far from Cut-Off.
First Solutions Second Solutions
u P u P
n=0 J4 (u)=0 0 (T™) J; (u)=0 o (TE)
nEl JIp-1 (u)=0 -1 (HE) I+ (0)=0 +1 (EH)




e X T
e ———T 5

e p———— T

«26~

APPENDIX: PROPERTIES OF BESSEL AND HANKEL FUNCTIONS

The argument of the Bessel functions is u and of the

modified Hankel functions w.

nd, _1 _
S £y (Jn-l + un+l), (A1)
Jpt = }_ (Jn-l - Jn+l)' (a2)
2
n
Jdon = (-1) Iy, -

Prom the first two eguations above

Ip' = YIp - n
ul

(a4)

u Jp an

For w real the modified Hankel functions Kn(w) are defined by

k) =T i ™t a B e, (a5)
2

1)
where Hn( (iw) are the Hankel functions of the first kind. The

equation corresponding to (A4) is

K' = K +on

_— (A6)
w Ky w Ky w2

CGerapw o Wl e i
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For small w,

Ko(w) = 1n (2/xw), (a7)

(n-1): 20~ n=2 for nz1, (aA8)

K (w)

where ¥ is Euler's constant and egual to 1.781. 8till in the

linit of w small,

Ky = 1n (2/xw), {A9)
w Kl
Kp.1 = [Z(n—l):l -1 for nZ 2. (a10)
w Ky

The asymptotic expressions for large w are

Kn (w) = (T /2w) 1/2 exp § -w} . (a11)
Kpo1 _ 2 ] (A12)
w Kn w
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CAPTIONS FOR FIGURES

Construction to show the equivalence of the waveguide
condition that at cut-off vph = c/n2 with the
geome*rical optics conditions that propagation occurs
only if the angle of incidence of the wave on the
fiber wall exceeds the criticel angle for total
internal reflection. The wave normal is given byAg,
S1 and S, are two equiphase surfaces separated by
A/n), and %g is the guide wavelength.

Typical curves of the frequency/ versus l/>\g for mode
propagation in a dielectric waveguide. Each mode is
represented by a lire which is cenfined o the region
between the lines whose slopes are c/n, and c/nl.

At the frequencyV ' the TEgpjy niode has a guide
wavelength of A

', phase velocity v and group

g ph

velocity vgroup.

Field plot in the core for the TE02 mode far from cut-
off and for a small difference in indices of
refraction of the core and cladding.

Field plot in the core for the HE,, mode far from cut-~
off and for a small difference in indices of refraction

of the core and cladding.
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Field plot in the
cut-o£ff and for a
refraction of the
Field plot in the
cut-off and for a

refraction of the
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core for the EHll mod2 far from
small difference in indices of
core and claddirg.

core for the HE;) mode far from
small difference in indices of

core and cladding.
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